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Based on the concepts of a subsystem structural dynamics approach, a general power #ow
analysis of an indeterminate vibrating system consisting of three rods is presented and
discussed. This is achieved by complementing the normal dynamic equations with
geometrical compatibility equations allowing assessment of power #ow dynamic
characteristics applied to and excited within the system. The method may be classi"ed as
a form of substructuring using free}free interface conditions. The displacement contribution
of the external and boundary coupling forces is deduced, permitting the power #ow between
the interfaces of substructures to be determined. The method presented is used in a power
#ow analysis of a simple rod truss system and in a more complex system as demonstrated.
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1. INTRODUCTION

Many types of engineering structures are subjected to high-frequency excitation, in the
sense that high modal densities are experienced in the high-frequency range. A power #ow
analysis (PFA) provides a technique able to model the high-frequency dynamic responses of
structural dynamical systems of high modal density. PFA and Statistical Energy Analysis
(SEA) [1}5] techniques demonstrate similarities of approach involving the division of
a structure into substructures and a time-averaged vibrational energy or power parameter
used to describe the response of a substructure.

The theoretical basis of SEA has developed because of the de"ciencies of "nite element
and other methods to analyze accurately the structural dynamic response of a system
excited at high frequencies. Fahy [1] presents a comprehensive critical review of SEA theory
highlighting its origin, development and future possible direction and applications. One of
the earliest applications of SEA to describe and analyze simple vibrating systems was
presented by Lyon and Maidanik [2], who formulated a mathematical method based on
modal theory. Lyon [3] further developed their ideas with applications to more complex
vibrating systems. Langley [4] described a wave theory approach and a mobility model was
proposed by Manning [5]. Keane and Price [6] and Fahy and Price [7] present recent
developments and advances in SEA theory and its mathematical modelling with
applications to complex, coupled vibrating systems.

The PFA approach is not necessarily restricted to the high-frequency range and the
parameters of power #ow and mobility may be expressed as a modal function aggregation
to retain the resonant behaviours of the individual and global structures at low modal
density. The mobilities describing "nite substructures may be expressed in an equivalent
22-460X/02/010003#20 $35.00/0 ( 2002 Academic Press



Figure 1. Schematic illustration of a system with three subsystems I}III. The arrows indicate energy #ow from
one subsystem to another. In the indeterminate system of (a), a delta energy #ow pattern occurs and three energy
#ow quantities are required to analyze the energy #ow in the system. In contrast, the sequential energy #ow pattern
observed in (b) requires only two energy #ows to analyze the system.
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manner to in"nite substructures at high modal density and therefore the results are similar
to those obtained by SEA [3].

One of the earliest concepts of PFA to describe and analyze simple vibrating systems was
presented by Lyon and Maidanik [2]. Goyder and White [8}10] used the rate of energy
#ow to characterize the dynamic response of the vibrating system and described the power
#ow through the isolation system. This was found to be a more meaningful parameter in
assessing the dynamic properties of isolator}engine systems as con"rmed by Pinnington
and White [11]. Xing and Price [12, 13] developed the concept of an energy #ow density
vector which uniquely de"nes the energy transmission between one part of a system and
another in the continuum system.

To study the energy #ow in a vibrating system or continuum adopting either a statistical
energy analysis or a power #ow analysis it is necessary to divide the continuum domain or
system into a number of subsystems. For illustrative purposes, Figure 1 schematically
shows a continuum divided into three subdomains (I, II, III), but with di!erent
con"gurations. For Figure 1(a), Xing and Price [13] showed that three energy #ows q

ij
,

forming a delta -ow pattern, are required in a PFA approach, whereas only two energy
#ows, forming a sequential -ow pattern, are required to analyze the subsystem con"guration
in Figure 1(b). They also demonstrated that because the number of independent energy #ow
equations for three subdomains is two, the delta #ow pattern cannot be determined solely
from an energy #ow balance analysis. In fact, the energy #ow lines in Figure 1(a) form
a closed curve, i.e., a conceptual delta shape, so that any quantity of energy #ow added will
not a!ect the energy #ow balance, further con"rming that the subdivided system of
Figure 1(a) cannot be determined only by examination of the equation of energy #ow
balance.

For frame structures, several PFA approaches have been presented which combine the
exact solution of individual structural elements. These include the mobility approach in
L-shaped plates by Cuschieri [14], the direct dynamic sti!ness method in a general frame by
Langley [15] and a travelling wave and scattering approach to a beam frame by Miller and
Flotow [16], Horner and White [17], Beale and Accorsi [18]. The beam frame systems
described in references [16}18] are indeterminate vibrating systems and displacement
boundary conditions in the coupling edges are applied to solve these problems. For
indeterminate vibrating systems, the main di!erences exhibited in the PFA approaches lie in
the di!erent methods used to calculate the response of subsystems. For example, in
references [16}18], a travelling wave method is developed whereas Shankar and Keane
[19, 20] employ "nite element methods.

This paper examines an indeterminate vibrating system consisting of three rods. It is
a segment of a rod}truss system, which is used widely in engineering. Usually, only



Figure 2. A single uniform rod system.
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compressive responses in the rod are considered in a static analysis and/or in a low modal
density range analysis of the rod}truss system, but herein bending in#uence is also
examined because there may be many bending modes in the frequency range under
investigation. A theoretical modal substructure approach is used to evaluate the vibration
power #ow characteristics of the posed simple three-rod system. Hence, natural frequencies
and mode shapes of the single rod are "rst determined and then a mobility function or
frequency response function is derived for the coupled three-rod system. This is achieved by
introducing geometrical compatibility conditions which supplement the normal dynamic
equations describing the vibrating characteristic of the indeterminate system. Both
instantaneous and time-averaged power #ows in the rod system are calculated and their
characteristics discussed. The modal substructure approach presented can readily take into
account variations in substructure damping and can also be applied to a more complex
structure as is further demonstrated.

2. MOBILITY FUNCTION AND POWER FLOW OF A SUBSYSTEM

Figure 2 illustrates a simple subsystem of the rod system shown later. Here it is treated as
an idealized system consisting of a single uniform rod of length l hinged at its base x"0
with a free end at x"l. This rod of uniform cross-section area A and moment of inertia I is
made of material of mass density o, elastic Young's modulus E and its structural damping
properties are represented by a linear Voigt viscoelastic model with hysteretic damping or
loss factor g. The harmonic axial and transverse exciting forces per unit length applied to
the free end are

¹(t)"¹
0
e*ut and S (t)"S

0
e*ut, (1)

respectively, where i denotes the square root of !1 and u the frequency of excitation.
It is assumed that the axial and transverse responses of the rod are uncoupled. The

equation of motion describing the axial displacement u (x, t) (see, for example, reference
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[21]) is given in the form

!EA (1#ig)
L2u (x, t)

Lx2
#oA

L2u(x, t)

Lt2
"¹(t) d(l!x), (2)

where d(x) denotes the Dirac delta function.
According to a theorem by Rayleigh [22], any distortion of the rod may be expressed as

an aggregate of distortions in its principal modes. That is

u (x, t)"
n
+
r/1

u
r
(x) p

r
(t), (3)

where u
r
(x) is the rth principal mode shape, p

r
(t) denotes the rth principal co-ordinate and

n modes are admitted into the analysis. For the axial vibration of the simple system under
examination

u
r
(x)"sin k

r
x"sin A

(2r!1)

2l
nxB (4)

and the rth natural frequency is given by

u
r
"k

rS
E

o
"A

(2r!1)

2l
nBS

E

o
. (5)

When the assumed solution is substituted into the equation of motion and the resulting
equation is multiplied by u

s
(x) prior to integrating with respect to x over the length of the

rod, the equation describing the rth principal co-ordinate p
r
(t) is expressed as

A[E(1#ig) k2
r
p
r
(t)#op(

r
(t)] P

l

0

sin2(k
r
x) dx"P

l

0

sin(k
r
x)¹(t) d(l!x) dx (6)

for r"1, 2, 3,2, n. After using equations (1) and (4), the principal co-ordinate is de"ned by
the expression

p
r
(t)"

2(!1)r`1¹
0

[!ou2#E(1#ig)k2
r
]Al

e*ut

"

2[(u2
r
!u2)!igu2

r
] sin(k

r
l)¹

0
m[(u2

r
!u2)2#g2u4

r
]

e*ut , (7)

where m"oAl is the mass of the rod. The substitution of equations (4) and (7) into
equation (3) gives the axial displacement of the rod at position x, 0)x)l. That is

u (x, t)"
2

m

n
+
r/1

[(u2
r
!u2)!igu2

r
](!1)r`1 sin(k

r
x)F (l)

[(u2
r
!u2)2#g2u4

r
]

e*ut, (8)

together with the vibration velocity,

uR (x, t)"
2

m

n
+
r/1

iu[(u2
r
!u2)!igu2

r
](!1)r`1 sin(k

r
x)¹

0
[(u2

r
!u2)2#g2u4c]

e*ut

"

2

m

n
+
r/1

uDsin(k
r
x) D¹

0
[(u2c!u2)2#g2u4

r
]1@2

e*(ut`u
u), (9)
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where

u
u
(x)"tan~1 C

n
+
r/1

(!1)r`1(u2
r
!u2) sin(k

r
x)

((u2
r
!u2)2#g2u4

r
) N

n
+
r/1

(!1)r`1gu2
r

sin(k
r
x)

((u2
r
!u2)2#g2u4

r
)D

is the phase angle between the velocity and axial exciting force.
Similar to this axial response analysis, the equation of motion describing the transverse

bending displacement w (x, t) is given in the form

!EI(1#ig)
L4w (x, t)

Lx4
#oA

L2w (x, t)

Lt2
"S (t) d(l!x), (10)

where S (t) denotes the transverse exciting force at the end of the rod.
For the system under examination, the natural frequencies and mode shapes (see, for

example, reference [23]) are given by

u
r
"

k2
r

l2 S
EI

Ao
, (11)

w
r
(x)"G

x

l
, r"0

sinA
k
r
x

l B#
sin k

r
sinh k

r

sinh A
k
r
x

l B , r"1, 2, 3,2, n
(12)

and

k
r
+G

0 for r"0

3)9266, 7)0686,2, (n#0)25)n for r"1, 2,2, n.
(13)

Similar to equation (7), the principal co-ordinate of bending vibration is de"ned by the
expression

p
r
(t)"

[(u2
r
!u2)!igu2

r
]w

r
(l)S

0
[(u2

r
!u2)2#g2u4

r
] :l

0
oAw2

r
(x) dx

e*ut . (14)

Using Rayleigh's theory (equation (3)), the transverse displacement of the rod at position x,
(0)x)l) is given by

w (x, t)"
n
+
r/0

[(u2
r
!u2)!igu2

r
]w

r
(x)w

r
(l) S

0
[(u2

r
!u2)2#g2u4

r
] :l

0
oAw2

r
(x) dx

e*ut, (15)

together with the vibration velocity,

wR (x, t)"
n
+
r/0

[uu2
r
#iu (u2

r
!u2)]w

r
(x)w

r
(l )S

0
[(u2

r
!u2)2#g2u4

r
]:l

0
oAw2

r
(x) dx

e*ut

"

n
+
r/0

uw
r
(x)w

r
(l )S

0
[(u2

r
!u2)2#g2u4

r
]1@2 :l

0
oAw2

r
(x) dx

e*(ut`u
w), (16)

where

u
w
(x)"tan~1 C

n
+

r/0

(u2
r
!u2)w

r
(x)w

r
(l )S

0
[(u2c!u2)2#g2u4

r
] :l

0
oAw2

r
(x) dxN

n
+

r/0

gu2
r
w
r
(x)w

r
(l )

[(u2c!u2)2#g2u4
r
] :l

0
oAw2

r
(x) dxD

describes the phase angle between the transverse velocity and transverse exciting force.
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Assuming that the rod is treated as a simple Euler}Bernoulli beam, it follows that slope
h(x, t)"Lw/Lx and bending moment M(x, t)"EI L2w/Lx2. A more sophisticated theory
may be adopted; e.g., Timoshenko beam, Vlasov beam, etc., which add complications to the
analysis without contributing additional insights into the power #ow mechanisms.

After accounting for the di!erent ways in which power #ows through the rod, the
instantaneous power #ow in the rod at section x is given by

q(x, t)"ReMuR (x, t)NReM¹(x, t)N#ReMwR (x, t)NReMS(x, t)N#ReMhQ (x, t)NReMM(x, t)N, (17)

where ¹ (x, t), S(x, t), M(x, t) denote the axial force, transverse shear force and bending
moment respectively.

The time-averaged value of power #ow over a period of excitation ¹ at position x is
given by

Sq(x, t)T"
1

¹ P
T

0

q(x, t) dt. (18)

It is easy to obtain all the parameters in equation (17) with uR (x, t) and wR (x, t) determined
from basic beam theory and given in equations (9, 16) respectively. The de"nition of power
#ow given by Goyder and White [8] or Cremer et al. [24, chapter 4, equation (129)], i.e.,
P"1

2
ReM f (x, t)v*(x, t)N, where vH(x, t) is the conjugate of the velocity, is the time-averaged

power #ow of equation (17), and hence, is equivalent to equation (18).
For illustrative purposes and to simplify the analysis, a steel rod of mass m"3120 kg,

with properties g"0)015, E/o"2)69]107 m2/s2, length l"10 m, section area
A"0)04 m2 is examined under a unit amplitude excitation in the axial direction. That is,
transverse bending is not considered in this example such that the instantaneous power #ow
in the rod simpli"es to

q (x, t)"ReMuR (x, t)NReM¹(x, t)N"ReMuR (x) e*(ut`u
u(x))NReM¹(x)e*(ut`u

T (x))N

"1
2

uR (x)¹(x)[cos(u
u
(x)!u

T
(x))#cos(2ut#u

u
(x)#u

T
(x))]

"uR (x)¹(x) cos(u
u
(x)!u

T
(x)) cos2 (ut#u

T
(x))

!1
2

uR (x)¹(x) sin(u
u
(x)!u

T
(x)) sin 2(ut#u

T
(x)), (19)

where uR (x) and ¹ (x) are the amplitude distributions of axial velocity and traction force,
respectively, u

T
(x) is the phase angle between the traction force and axial exciting force,

u
u
(x) is already de"ned in equation (9). Fahy [25] derived an equivalent equation for the

instantaneous sound intensity component. The "rst term, with a non-zero time-averaged
value, represents an active component, corresponding to the local transmission of the
energy, that is, the damping dissipation of energy. The second term, with a zero
time-averaged value, represents a reactive component, corresponding to the local
oscillatory transmission of energy, that is, the local energy exchange between kinetic energy,
potential energy and the input energy of excitation.

Figure 3 illustrates the magnitudes of response velocity, traction force and power #ow
distributed along the rod at frequencies of 200 and 328)9 Hz. The frequency 328)9 Hz
corresponds to the resonance frequency of the second natural mode of the rod. The
magnitudes of input power and time-averaged input power created by the unit force
amplitude excitation are of value 8)74]10~6 W. They are the same value because the
excitation force and velocity response at the exciting position have the same phase angles
and, therefore, the reactive input power is always equal to zero. At the frequency of 200 Hz,



Figure 3. Distribution of the magnitudes of (a) velocity and traction force: **, velocity at resonance; ----,
velocity at non-resonance;*h*, traction force at resonance; --]--, traction force at non-resonance; (b) power #ow
along the rod at a resonance frequency of 328)9 Hz and a non-resonance frequency of 200 Hz: **, power #ow
magnitude (resonance); ----, power #ow magnitude (non-resonance);*n*, time-averaged power #ow (resonance);
--]--, time-averaged power #ow (non-resonance).
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corresponding to a non-resonance condition, the reactive input power is not equal to zero
with respective magnitudes of input power and time-averaged input power of values
2)71]10~7 W and 8)59]10~9 W.

As shown in Figure 3(a), at the resonance frequency of 328)9 Hz, the response velocity
and traction force along the rod experience minimum values at di!erent positions, thus
creating two troughs in the power #ow distribution curve as shown in Figure 3(b). At
a non-resonance frequency of 200 Hz, only the traction force exhibits a minimum value
producing only a single power #ow trough at exactly the same position on the rod. The
magnitude of instantaneous power #ow at any point along the rod (i.e., 0(x(l) may be
larger than the magnitude of instantaneous input power of the exciting force at x"l due to
the in#uence of resonance. This is because the distribution of phase associated with the
reactive power component along the rod in equation (19) varies with position causing the
phase at some positions to be opposite in sign to the value at other positions. This implies
that some parts of the rod store energy whereas other parts release energy and the rate of



Figure 4. A three-rod indeterminate system.
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energy transfer at di!erent sections of the rod may be larger than the input power, but the
aggregation of instantaneous power #ow along all sections of the rod is equal to the
instantaneous input power of the exciting force at any instant time. The distribution curve
of the time-averaged power #ow does not exhibit troughs along the rod in both resonant
and non-resonant conditions as shown in Figure 3(b). The time-averaged power #ow values
always increase with increasing x along the rod. This is due to the fact that in any period, the
time-averaged power #ow value in any section x is equal to the rate of total energy
dissipation of the rod from sections 0 to x.

3. POWER FLOW IN AN INDETERMINATE THREE-ROD SYSTEM

3.1. BOUNDARY CONDITION AT A JUNCTION

Figure 4 illustrates the three-rod system under examination. It is assumed that each
uniform rod is constructed of the same material (i.e., same Young's modulus E and
structural damping loss factor g) but of di!erent lengths l

j
( j"1, 2, 3), moment of the

inertias I
j
, cross-sectional areas A

j
and masses m

j
"ol

j
A

j
. For simplicity, rod 2 is assumed

to be vertical though this restriction may be removed but this increases algebraic
manipulation without producing additional conceptual insights into this study. Each rod is
hinged at its base (see also Figure 2) and connected at their ends at C where an external
exciting force f (t)"Fe*ut acts causing axial traction forces ¹

j
(t) and transverse shear forces

S
j
(t) at C.
Following the discussion of the previous section and because of structural damping, the

axial traction force and transverse shear force in each rod at C is expressed in the complex
valued form

¹
j
(t)"¹

j
e*(ut`u

Tj) S
j
(t)"S

j
e*(ut`u

Sj), (20)

where u
Tj

, u
Sj

denote the phase angles between the external force f (t) and axial traction
force ¹

j
(t), and the external force f (t) and transverse shear force S

j
(t) of the rod

j respectively.
For the simpli"ed indeterminate system under examination, the force balance equation at

C is given by

¹
1
(t) sin a#S

1
(t) cos a#S

2
(t)!¹

3
(t) sin b#S

3
(t) cos b"f (t) cos c,

¹
1
(t) cos a!S

1
(t) sin a#¹

2
(t)#¹

3
(t) cos b#S

3
(t) sin b"f (t) sin c,

(21)
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where the angles are de"ned in Figure 4. For solution, this set of equations must be
supplemented by a geometrical compatibility equation. That is, the distortions or
velocities at point C of the three rods are the same in all directions, thus providing the
conditions

uR
1
(t) sin a#wR

1
(t) cos a!wR

2
(t)"0,

uR
1
(t) cos a!wR

1
(t) sin a!wR

2
(t)"0,

!uR
3
(t) sin b#wR

3
(t) cos b!uR

2
(t)"0,

uR
3
(t) cos b#wR

3
(t) sin b!uR

2
(t)"0,

(22)

where uR
j
(t), wR

j
(t) denote the axial and transverse velocities, respectively, at point C of the

rod j.
It follows from equations (9) and (16) that the axial and transverse velocities at C in each

rod of this indeterminate system can be expressed in the form

uR
j
(t)"

2

m
j

n
+
r/1

u¹
j
(t)

[(u2
r,uj

!u2)2#g2u4
r,uj

]1@2
e*uuj

"¹

j

(t);
j
e*uuj, (23)

wR
j
(t)"

n
+
r/0

uw
r,j

(x)w
r,j

(l )S
j
(t)

[(u2
r,wj

!u2)2#g2u4
r,wj

]1@2 :l
0
oAw2

r,j
(x) dx

e*uwj

"S
j
(t)=

j
e*uwj, (24)

where u
r,uj

is the rth natural frequency of axial vibration of the jth rod and u
uj

is the phase
angle between axial velocity uR

j
(t) and traction force ¹

j
(t); u

r,wj
, w

r,j
are the rth natural

frequency and mode shape of transverse bending vibration of the jth rod and u
wj

is the
phase angle between transverse velocity wR

j
(t) and shear force S

j
(t).

From equations (22)} (24), the geometrically compatible equations become

¹
1
(t);

1
e*uu1 sin a#S

1
(t)=

1
e*uw1 cos a!S

2
(t)=

2
e*uw2"0,

¹
1
(t);

1
e*uu1 cos a!S

1
(t)=

1
e*uw1 sin a!S

2
(t)=

2
e*uw2"0,

!¹
3
(t);

3
e*uu3 sin b#S

3
(t)=

3
e*uw3 cos b!¹

2
(t);

2
e*uu2"0,

¹
3
(t);

3
e*uu3 cos b#S

3
(t)=

3
e*uw3 sin b!¹

2
(t);

2
e*uu2"0.

(25)

The information contained within the force balance equation (21) and this geometrical
compatible equation (25) allows the traction forces ¹

j
(t) and shear forces S

j
(t) in each rod

C to be determined.

3.2. POWER FLOW IN THE INDETERMINATE THREE-ROD SYSTEM

The real input power to each rod at connection point C is given by

q
j
(t)"ReMuR

j
(t)NReM¹

j
(t)N#ReMwR

j
(t)NReMS

j
(t)N, (26)



Figure 5. The variation with frequency of the amplitudes of the input power #ows (W) in the three rods q
j
, j"1,

2, 3 and excitation q
in
: **, q

1
; } } }, q

2
; } )} )}, q

3
; 2h*, q

in
.

Figure 6. The variation with frequency of the amplitudes of the time-averaged input power #ows (W) in the
three rods Sq

j
(t)T and excitation Sq

in
(t)T: **, Sq

1
T; } } }, Sq

2
T; } )} )}, Sq

3
T; 2h*, Sq

in
T.
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for j"1, 2, 3. The substitution of equations (20), (23) and (24) into the previous equation
gives

q
j
(t)"ReM;

j
¹

j
e*(ut`u

Tj`u
uj)NReM¹

j
e*(ut`u

Tj)N#ReM=
j
S
j
e*(ut`u

Sj`u
wj)NReM=

j
e*(ut`u

Sj)N

"1
2
;
j
¹2

j
[cos u

uj
#cos(2ut#2u

Tj
#u

uj
)]

#1
2
=

j
S2
j
[cos u

wj
#cos(2ut#2u

Sj
#u

Wj
)]

"1
2

(;
j
¹2

j
cos u

uj
#=

j
S2
j

cos u
wj

)#A
j
cos(2ut#u

j
) (27)



Figure 7. The corresponding information to Figure 6 expressed in a one-third octave scale (Ref. power
10~12 W): **, q

1
; ----, q

2
; } )} )}, q

3
; 2h*, q

in
.

Figure 8. The corresponding information to Figure 7 expressed in a one-third octave scale: **, Sq
1
T; ----,

Sq
2
T; } )} )}, Sq

3
T; 2h*, Sq

in
T.
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and its time-averaged value over a period ¹ of excitation is

Sq
j
(t)T"

1

¹ P
T

0

q
j
(t) dt"

1

2
;
j
¹2

j
cos u

uj
#

1

2
=

j
S2
j

cos u
wj

, (28)

where

u
j
"cos~1 C

;
j
¹2

j
cos(2u

Tj
#u

uj
)#=

j
S2
j

cos(2u
Sj
#u

wj
)

A
j

D ,

A
j
"1

2
[(;

j
¹2
j

cos(2u
Tj
#u

uj
)#=

j
S2
j

cos(2u
Sj
#u

wj
))2

#(;
j
¹2
j

sin(2u
Tj
#u

uj
)#=

j
S2
j

sin(2u
Sj
#u

wj
))2]1@2.



Figure 9. The variation with time of the input power #ows in the three rods q
j
(t) and the excitation q

in
(t) at an

exciting frequency of 375 Hz and angle of application of force, c"453 (see, Figure 4):**, q
1
(t); ----, q

2
(t); } )} )},

q
3
(t); 2h*, q

in
(t).

Figure 10. The variation with frequency of the amplitudes of the input power #ow q
1
(t) to rod 1 (see, Figure 4)

expressed in a one-third octave scale for di!erent angles of application of force c:**, 0; } } }, 45; ----, 90; } ) )}, 135.
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The combination of these last two equations gives

q
j
(t)"Sq

j
(t)T#Sq

j
(t)T

cos(2ut#u
j
)

cos u
j

, (29)

indicating that the power #ow in each rod contains a component equal to its time-averaged
power #ow value and hence is constant in time but varying with the frequency of excitation.
Due to the in#uence of structural damping, cos u

j
'0, since u

j
O903 and this component

reduces in value as gP0. The dynamic component has an oscillatory behaviour of double
the frequency of excitation. The instantaneous power #ow q

j
(t) expressed in equation (27) or



Figure 11. The variation with frequency of the amplitudes of the input power #ow q
2
(t) to rod 2 (see, Figure 4)

expressed in a one-third octave scale for di!erent angles of application of force c:**, 0; } } }, 45; ----, 90; } ) )}, 135.

Figure 12. The variation with frequency of the amplitudes of the input power #ow q
3
(t) to rod 3 (see, Figure 4)

expressed in a one-third octave scale for di!erent angles of application of force c:**, 0; } } }, 45; ----, 90; } ) )}, 135.
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(29) is similar in form to equation (19) and the instantaneous sound intensity component
derived by Fahy [25] and Bobrovnitskii [26]. It contains two components: an active
component, with a non-zero time-averaged value, corresponding to local transport of the
energy and a reactive component, with a zero time-averaged value, corresponding to local
oscillatory transport of energy.

Similarly, the input power at C due to the external exciting force is given by

q
in
(t)"ReMv

c
(t)NReM f (t)N (30)



Figure 13. The variation with frequency of the amplitudes of the excitation power #ow q
in
(t) expressed in

a one-third octave scale for di!erent angles of application of force c (see, Figure 4):**, 0; } } }, 45; ----, 90; } ) )},
135.

Figure 14. The variation with frequency of the amplitudes of the power #ow q
1
(t) in rod 1 and excitation q

in
(t)

expressed in a one-third octave scale: *n*, q
1
} including bending in#uence; --s--, q

in
} including bending

in#uence; **, q
1
} not including bending in#uence; ----, q

in
} not including bending in#uence.

16 Z. H. WANG E¹ A¸.
with a corresponding averaged quantity Sq
in
(t)T, where v

c
(t) is the velocity along the

direction of exciting force f (t) at point C. From the geometrical compatibility condition, the
input power at C due to the external exciting force becomes

q
in
(t)"ReMuR

2
(t)NReM f (t)Nsin h#ReMwR

2
(t)NReM f (t)Ncos h (31)

with the corresponding time-averaged quantity Sq
in
(t)T.

It is interesting to note that expressions for the power #ow balance condition at C
may be obtained by multiplying equations (21) and (25) by the velocity at C. Unfortunately,



Figure 15. The variation with frequency of the amplitudes of the power #ow q
2
(t), q

3
(t) in rods 2, 3, respectively,

expressed in a one-third octave scale: *n*, q
2
} including bending in#uence; --s--, q

3
} including bending

in#uence; **, q
2
} not including bending in#uence; ----, q

3
} not including bending in#uence.

Figure 16. The variation with frequency of the amplitudes of the time-averaged power #ow Sq
1
(t)T in rod 1 and

excitation Sq
in
(t)T expressed in a one-third octave scale: *n*, Sq

1
T } including bending in#uence; --s--, Sq

in
T

} including bending in#uence; **, Sq
1
T } not including bending in#uence; ----, Sq

in
T } not including bending

in#uence.
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in this form, these balance equations are di$cult to handle in terms of deriving solutions
of power #ows. The basic power #ow balance equation from equation (21) at C is
given by

q
in
(t)"q

1
(t)#q

2
(t)#q

3
(t) (32)

with time-averaged quantity,

Sq
in
(t)T"Sq

1
(t)T#Sq

2
(t)T#Sq

3
(t)T. (33)



Figure 17. The variation with frequency of the amplitudes of the time-averaged power #ow Sq
2
(t)T, Sq

3
(t)T in

rods 2, 3, respectively, expressed in a one-third octave scale:*n*, Sq
2
T } including bending in#uence; --s--, Sq

3
T

} including bending in#uence; **, Sq
2
T } not including bending in#uence; ----, Sq

3
T } not including bending

in#uence.

Figure 18. A beam frame with eight members of lengths measured in millimetres [18].
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3.3. CALCULATION EXAMPLE 1

For illustrative purposes, it is assumed that the indeterminate system is de"ned by the
data set:

l
1
"10 m, l

2
"5 m, l

3
"5)7735 m, A

1
"0)04 m2"A

2
"A

3
,

I
1
"I

2
"I

3
"1)333]10~4 m4,

o"7)8 g/cm3, E"2)1]1011 N/m2, g"0)015, a"603, b"303, F"1)0 N.

The largest natural frequency for both compressive and bending vibration in each rod is
chosen to be greater than 10 times the calculated frequency.

In the following presentation of predictions of power #ow variation with frequency or
time, Figures 5}9 relate to condition c"453 (see Figure 4). Figure 5 illustrates the variation
of the amplitude of power #ow with frequency u and non-dimensional frequency



Figure 19. The variation with frequency of the amplitudes of the power #ow in junction A:**, amplitude of
instantaneous power #ow; ----, amplitude of time-averaged power #ow.

Figure 20. The variation with frequency of the amplitudes of the power #ow in junction C:**, amplitude of
instantaneous power #ow; ----, amplitude of time-averaged power #ow.
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X (X"ul
1
Jo/E/n) in each rod at C (i.e., equation (27)) and the excitation power #ow given

by equation (30). Figure 6 shows their time-averaged quantities, i.e. Sq
j
(t)T and Sq

in
(t)T.

Figures 7 and 8 present the same information in terms of one-third octave value. Figure 9
illustrates the time variation of the power #ow quantities under investigation at an exciting
frequency f

n
"375 Hz. Figures 10}13 show a selection of power #ow results for c"0, 45, 90

and 1353, allowing comparison with Figures 5}8 to evaluate the e!ect of angle of
application of the external excitation on the dynamic characteristics of the indeterminate
system.

Although the instantaneous excitation input power q
in
(t) is equal to the sum of the three

input powers of each rod, as observed in equation (32) and Figure 9, its value is not
necessarily larger than the individual quantities. This is due to the in#uence of resonance
and the manner in which energy is transferred within the overall system. For example, the



Figure 21. The variation with frequency of the time-averaged power #ow in junctions A and C: --#--, junction
A; **, junction C.
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amplitude q
1
(t) is much larger than the amplitudes of q

3
(t) or q

in
(t) but at any instant their

phasing is such that the energy in the total system remains in balance.
In contrast, as shown in Figures 6 and 10, the time-averaged excitation power Sq

in
(t)T is

always greater in value than the other time-averaged quantities. This is due to the fact that
in any period, the time-averaged power of excitation is equal to the rate of total energy
dissipation of the system (see, for example, references [1, 3, 13]) and is equal to the sum of
the energy dissipations in each rod (see equation (33)). As demonstrated in equation (28),
each time-averaged quantity Sq

j
(t)T contains a constant component contribution to the

overall dynamics of the system, depending on both the amplitude of the instantaneous input
power and the phase angle between the velocity response and the traction and shear forces.
Their peak values occur at resonance because both values of amplitude of power and
cos u

uj
or cos u

wj
are largest.

In the low-frequency band range, Figures 7 and 8 show both the instantaneous power
and time-averaged power in#uenced by resonance but this diminishes with increasing
frequency values. For frequencies greater than 1)25 kHz, both instantaneous and
time-averaged input powers expressed in the one-third octave scale range are stable in form.
This is due to the presence of more modes and an increased in#uence of damping in the
higher frequency band range, indicating that SEA is an appropriate analysis tool over
1)25 kHz.

For the indeterminate system under examination, input power depends on the excitation,
dynamic and geometrical characteristics of the structures. It can be seen clearly from the
selected results shown in Figures 10}13 that the input power of excitation and the power
#ow in each rod is related to the angle of excitation (Figure 4).

For illustrative and comparison purpose, Figures 14}17 relate to condition c"453 (see
Figure 4) and show a set of results including and excluding bending in#uences. That is, in
the latter case, only the compressive response of the rod is considered. Figures 14 and 15
illustrate the variation of the amplitude of power #ow with one-third octave in each rod at
C and the excitation power. Figures 16 and 17 show their time-averaged quantities.

Although there are many bending modes in the rod}truss system, the amplitudes of
instantaneous and time-averaged power #ow in each rod at C and the excitation power #ow
have similar levels of magnitude in the middle- and high-frequency ranges for both
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conditions examined. There are obvious resonant bending mode in#uences below and near
the "rst natural frequency of compressive vibration of the rod. These resonant in#uences in
a time-averaged power #ow analysis become larger and more noticeable because
time-averaged power depends on both values of amplitude of power and cos u

uj
or cos u

wj

(see, equation (28)) with cos u
wj

largest in the bending resonant condition.

3.4. CALCULATION EXAMPLE 2

The second example shown in Figure 18 is a more complex system constructed using
eight beam members. Their material and geometric properties are as follows: E"207 GPa,
o"7860 kg/m3, g"0)01; section area of beams (1), (3), (5), (6), (7)"203]203 mm2, section
area of beams (2), (4), (8)"152]152 mm2. The frame is loaded at junctions A and C by
harmonic forces f

1
(t)"22)25e*ut N and f

2
(t)"44)5e*ut N respectively. This system was

originally examined by Beale and Accorsi [18] in assessing its dynamic characteristics by
adopting a travelling wave model.

Similar to the calculations described in Example 1, a modal substructure approach is
again used to calculate the power #ow utilizing the force (moment) balance equations and
geometrical compatibility equations at junctions A}C. The substructure boundary
conditions used here are one end "xed, one end free for beams (1)} (3), two free ends for
beams (4), (7) and one end simply supported, one end free for beams (5), (6), (8). The
expressions describing power #ow at a junction are similar to those given in equations
(31)}(33). The power #ow at a junction is zero (for example, junction B) if there is no applied
external excitation force at this position because of the balance between internal forces and
continuous displacements.

Figures 19}21 illustrate the variation of the amplitude of power #ow with frequency at
junctions A and C. The calculated time-averaged power #ow values at junctions A and
C demonstrate the same trends as those presented by Beale and Accorsi [18]. From
Figure 21, it is observed that the time-averaged power #ow at junction A produces negative
values at several exciting frequencies implying that the direction of the exciting force f

1
(t)

and the velocity are opposite to one another. This means that the exciting force source f
1
(t)

at junction A absorbs power from the system and it behaves as an active control source at
these frequencies.

4. CONCLUSIONS

Based on a dynamic substructure approach, the power #ow of an indeterminate rod
system is calculated by combining the force balance equations with geometrical
compatibility equations. The power #ow in each rod is strongly related to its dynamic
response and it may be larger than the input power of excitation due to resonance. When
only one excitation source exists, it was shown that the time-averaged input power of
excitation is always greater in value than the other time-averaged quantities. But when
several excitation sources are applied at the same time, the time-averaged input power of an
exciting source may be negative and is behaving as an active control source. The input
power depends on the excitation, geometrical and dynamical characteristics of the
subsystems. The instantaneous power #ow in each rod is represented by a constant
component in time equal to its time-averaged power #ow value and a dynamic component
of double the frequency of excitation and an amplitude related to the time-averaged power
#ow, i.e., Sq

j
(t)T/cos u

j
, see equation (29). The resonance in#uences in both instantaneous
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power and time-averaged quantity decrease as the frequency increases, with stable dynamic
characteristics exhibited at higher frequencies (higher modal density).
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